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Dynamical mechanisms for biological evolution
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Both the power law and the punctuated equilibrium phenomena, which have lately been regarded as an
essential requirement in order to model biological evolution, are analyzed here with reference to a simple
model recently introduced in the literature. We show that these features are inherent in the associated dynam-
ics, without recourse to external perturbations. It is seen, also, that correlations among phenotypic features
constitute an essential ingredient. Comparison with previous evolutive models that exhibit self-organized
criticality is also made[S1063-651X97)10306-3

PACS numbes): 87.10+e, 05.40+]

I. INTRODUCTION reasonable conjectures concerning terrestrial biology.
A more involved model, inspired in Ref$§l5,16, has

Gould[1] has conjectured that biological evolution takesbeen recently proposdd7] that mixes contraption and de-
place in terms of intermittent bursts of activity separatingsign with randomnessThe model exhibits some criticality
relatively long periods of quiescence, rather than in a gradudkatures, in particular, in what pertains to power laws in the
manner. distribution of the intensities of the evolutive avalanches, as

This intermittent pattern has been observed by Raup, Sefbtained by Raup3] on the basis of fossil records.
kosky, and Boyajiam2-5] by studying fossil records. Gould  More specifically, it was found il 7] that its dynamics is
has coined the term “punctuated equilibrium” to describe complex enough so as to be able to mimic some facets of
the intermittent behavior of the evolution of single species. actual biological evolution. On the basis of the model one

It has been suggested that extinction events are caused Ryay understand that sevefalmple dynamical mechanisms
external forcedat least the larger ongssuch as changing  eyist that account for these facets without recourse to cata-
sea leveld 6], worldwide climate pulse$7], or meteorites strophic events.
[8]. Plausible as this is, punctuated equilibrium may well be 1o mainnewfeature of the model dfL7] resides in that

the natural consequence of the dynamics of biology |tself|t allows species, say, to respond ingradual fashion to

with no need for external triggering mechanisms. . A
. o . changes affecting another speci® (n such a manner that
Following this idea, it has been suggested that the ecolog g . .
econd-order effects arising out of tAeB interaction may

of interacting species has evolved to a self-organized critica . . :
state[9,10]. Self-organized criticality{11,12 refers to the influence athird species, and so on. A.w.hole chain 01_‘
tendency of some dynamical systems to organize themselv&§ianges thus ensues that takes place within the same time
into a “poised” state far out of equilibriuntat the edge of scale in _whlchB is changlng. _Actlons and reactions occur
chaos with propagating avalanches of activity of all sizes. almost simultaneously, which is not the case of the model of
However, theoretical investigations have been hampereBak et al.[15,16.
by the difficulty of constructing even remotely realistic, yet In view of the relative success of the model advanced in
tractable mathematical models. First, punctuated equilibri&ef. [17] we think it appropriate to try to qualitatively un-
were observed by Bak, Chen, and Crelfkin the “Game  derstand the reasons that underlie that success, under the
of Life,” a simple computer model of a society of living and assumption that some qualitative features of the concomitant
dying individuals living on a two dimensional lattice. How- dynamics should be identified and considered responsible for
ever, it is not robust against small changes in the rules, as it. If these features can be pinpointed, further progress can
should be in order to represent real evolution. Later, Kauffsurely be made in constructing more realistic models.
man and Johnseri0] studied elaborate “NKC models” of In this vein we ask ourselves the following questiofis.
coevolving species evolving at the edge of criticality, with What exactly is the role that, in this model, correlations be-
periods of stasis interrupted by coevolutionary avalanchesween phenotype and genotype play? Are they an essential
However, as these models were driven they do not selfdynamical ingredient responsible for the punctuated equilib-
organize: some external tuning of the system was needed tium (and power law behavior or just a superfluous feature?
obtain critical behaviof13,14. (2) Are the mechanisms that originate the punctuated equi-
Finally, Bak, Sneppen, and Flivbjerid.5,16 studied a librium and power law behavior in the present model similar
very ingenious model of an evolving biology which self- to those of the pioneer models referred to ab@médhe sense
organizes into a critical steady state. Notwithstanding its relthat the dynamics of the model necessarily involves evolu-
evance and originality, the model is too simple to allow fortion towards a self-organized critical state do we find here
alternativedynamical mechanisms?
It is the aim of the present paper to answer these ques-
*Electronic address: fernande@venus.fisica.unlp.edu.ar tions. We begin the concomitant task with a brief review of
TElectronic address: plastino@venus.fisica.unlp.edu.ar the model under consideration.
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Il. MODEL ally) attain, after a series of appropriate mutaticansy phe-

We deal withM distinct, interacting biological species, ?Soet)ép[)i(;]f?:rtur:]%r\ghf ;tsaoi&ver. This does not happen in nature

each of which is represented by a vectotifi. The compo- The system evolves in the following fashion: we start

nents Vi, of V' represent different phenotypic features with an arbitrary initial configuratiorithe a; are randomly
(a,B, ...) that are to be affected and modified by the evo-chosen withinf —1,1]) and, in each of a series of time steps,
lutionary process. The degree to which tit species is mytation effects are mimicked by slightly modifying tae
“adapted” to the environment is represented by a quantityfor the th species. Both the selection bind the nature of

Fi, to be called its "fitness,” a vocable thdin biology) changes are random. The condit|{af| =1 is enforced
would encompass fecundity, fertility, and other factors rel- ) ) o -
so as to avoid unrestricted growtwith time) of |V'|.

evant to reproductive success. In our moHglis given by ’ i ; X o
A particular mutation(change in a givem) is “ac-

the expression e oI
P cepted” if it increases the corresponding fitnéas a conse-

M N guence of such a mutatidf, grows. Thea change is in this
F = TVVLEES VAL i=1,...M (1 case retained“selection” acting on “single genes). Oth-
' 2 aE,B Jas p Ey Ay erwise it is discarded and tte end up with their previous,
B old values.
where the hypermatrig'(){ﬁ provides the details of the inter- Extensive numerical studies suggest that such a system

species interaction and the second summand on the righever reaches an equilibrium situation, a fact that could be
hand side is an “environmental” on@ee below. As in Ref.  guessed from the skew symmetrygf [19]. The number of
[17] we assume!l,= —gli, . This is a reasonable assump- speciesM, is kept constant for the sake of simplicity. How-
tion, because if thex feature of the species gives it a  €Ver, as the features of each species are in a state of continu-
competitive edge against th@ feature of thej species, the 0us change, there is a considerable amount of “evolutive
latter gives it, of course, a competitive disadvantage againgictivity,” that we shall quantify with reference to the motion
the former(symbiosis is excluded The A!, matrix mimics ~ Of & “center of mass”

the environmental influencésuch as climate, geography, M

etc) over they feature of theith species. Notice the strong % = E i )
similarity of the right-hand side above with that of the right- em—

hand side of Volterra’s dynamics for the populatidds of

M interacting speciegl8| whose value is to be ascertained at a series of regularly
spaced times. We define evolutive activigyE) in the fash-
dN, & } ion
— =2 ANi+g'NiNj, )
dt =1 v |2
AE=[6Xcml%, (6)

where, of course, the symbols have different meanings whic{},ore 5, stands for “variation int temporal steps’{in this

we do not need to explain here. _ ~ work we choose the number of steps to be 2000
Of course, the components uf must necessarily exhibit A species becomes extinct when it accumulates a succes-
some degree of correlation, as genes are simultaneously i8ion of changes of a certain magnitude. More specifically,

volved in several phenotypic features. This correlation is rePywhenever the vectdd' traverses iR\ a distance larger than
resented by recourse to mappings between a det-df real (a thresholg D,

parameters and each of these components, i.e., For simplicity’s sake we choo€® our hypermatrix in the

i i i form
fﬁ:ao, ...,akg)vﬁ, (3) -
gICJ( =ki; 5aﬁi (7)
that is, . g
_ _ _ and (i) A} =0. The latter is more than a mere way of sim-
Vig=fg(ag, - - - &), (4)  plifying things, however, as we intend to demonstrate that
the main facets of biological evolution our model tries to

with f; an appropriate function. The sa}, . .. aj defines ~Mimic are of anintrinsic dynamical origin so that ambient

in fact thei species. As a result of biological mutations, theselnfluences need not to be invoked.
parameters are allowed to vary with time. The family of all Now, Eq.(1) reduces to
these M) sets can be called thmnfigurationof the system. M

The conceptual difference between tas and theV’s Fi=> k V-V, i
should be emphasized here. The component¥ afenote ey '
different phenotypic features of the species that this vector
represents. These features are correlated, via®en the  where kjj=—k;;. The k;; are randomly chosen within
manner just described. Genetic changes, here mimicked Hy-1,1] (for i<j) and are kept constant throughout. These
modifications in thea values, drive the evolutionary process. simplifications notwithstanding, a complex enough dynamics
The correlations just mentioned constitute an essential aspeehsues that it can account for important details of fossil
of the model. Without them, a given species mi¢ghientu-  records.

=1,...M (8)
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FIG. 1. Global evolution rate (arbitrary unit3 for
M=25, N=7, andk=5. Each point represents the distance tra-
versed by the center of mass of the system in an adimension
temporal unit equal to 1000 time steps.

FIG. 2. Time evolution of the number of beneficial mutations
for the data of Fig. 1. Each point corresponds to an adimensional
mporal unit equal to 1000 time steps.

._(i.e., of great morphological changest remains approxi-

space. the “correlation functions” discussed above can b%ately the same at all times, with random fluctuations, as
pace, Silustrated in Fig. 2. It is to be pointed out that, as far as we

chosen in a simple, and at the same time general, fashion : . e
k-degree polynomialgct. Eq. (4)]. In [17] the functional %E?]\;V\,/ig? other model is able fuantitativelyexhibit such a

form was chosen in th&uite generalfashion

IV. ROLE OF THE CORRELATIONS

k
fs=2 ax", x=pgIN 9 - - i
A n§=:O " A © The parameters,, define the species. The manner in

which the different phenotypic characteristics of a given or-
so that ganism are correlated depends upon these parameters, which
are being continuously modified at approximately the same
i i mean rate. However, these changes do not affect the distinct
Vﬁ:nzo an(BIN)". (10 species(or the same species at different tirnds similar
fashion. For a given set af, values a small variatioda,,
Notice that in the limitk=— we have avery general ~may be translated into a correspondingly small change in the
representation for our functions. Indeed, in that limit E%).  phenotypic featured/;. But it is also possible that for a

k

can represerany function[20]. different a,, set a tiny da, may result in an appreciabM¢,
change. Thus, during its evolutive history, a species enters
lIl. DYNAMICS OF THE MODEL (and leavepdiverse regiong; of the spaceéA of coordinates

a,, the nature of whose mapping on thespace(coordi-
Figure 1 depicts biological activity versus time for natesV,) considerably varies witlistrongly depends updn
M =25, N=7, and[cf. Eq. (4)] k=5. One thousand time i, from region to region.
steps have been considered as the unit of time. The curve is |n this model the correlation functiohis the responsible
qualitatively similar to Sepkosky’s extinction curve, obtainedfor the critical phenomena it exhibits. This is easily verified.
on the basis of the fossil recof8], and to that obtained in |n a simulation run withouf one has
[17].

A more detailed analysis of the evolving system of Fig. 1 Vi=aj, (12)
shows that the distributions of evolutive activity and lifetime
follow a power law(see also the curves of R¢lL7]). so that the different phenotypic features evolve in indepen-

Power laws are typical of the self-organized criticality dent fashion. The corresponding results are depicted in Figs.
encountered in dealing with the celebrat@dthough sim- 3-5.
pler) models of Refs[15,16]. The fact that both lifetime and Figure 3 depicts global evolutive activity vs time. Any
number of extinct species follow there a power law is usuallyresemblance to Sepkosky’s extinction ¢Bgis now lost. No
regarded as evidence for critical behavibhis is not neces- sudden activity explosions ensue. For the single-species in-
sarily so, as will be shown in the present effort. stance (Fig. 5 similar features are observed. Punctuated

An important difference between our model and the one®quilibrium has disappeared. Figure 4 displays the distribu-
of [15,16 becomes apparent if we look at a graph of thetion of evolutive activities corresponding to the results
number of “accepted”(good, beneficial mutations versus shown in Fig. 3. No power law is obeyed and correlations
time, for the series of Fig. 1. Contrary to what happens inamong the diverse phenotypic features are thus seen to be an
[15,16, in this case the number of beneficial mutatialmes  essential ingredient in order to attain criticality. The same
not augment during the periods of frenetic biological activity happens with lifetime distributions. However, no important
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FIG. 5. Single-species evolutive activitarbitrary unitg. The

FIG. 3. Global evolutive activityarbitrary unit$ for an uncor- dat th f Fig. 3. Punctuated ibri has di q
related system wittM =25, N=7. Each point represents the dis- ata are those of Fg. S. Funcluated equilibnium has disappeared.
The temporal units are those of Fig. 1.

tance traversed by the system'’s center of mass in the units of Fig. 1.

differences are observed in relation to the results depicted in The correlation coefficient between two quantitiggn)
Fig. 2 (number of mutations vs time andxy(n) is
Our model does not exhibit scaling behavior whéyv

change, in contrast with the situation encountered when deal-
ing with most dynamical systems possessing self-organized
criticality. Some features of the mapping betweerand V
spaces, in turn, deserve special comment. The valug isf
constant along straight lines through the originAinMuta-

tions (variations a that do not change vector orientation in
a leaveV invariant (see the Appendijx a fact that implies

that a givensa will affect V to a greater extent for smadl ~ and varies in the intervdl—1,1]. The value 1 entails maxi-
values than for Iargé ones. mum degree of correlation; 1 “anticorrelation,” and zero,

We now call attention to the results depicted in Fig. 6,n0 correlatior{x;(n), xp(n) vary in independent fashign
In our case we tak&l=10" andx,(n), X,(n) are to be

N
2, Da(m=x]xa(n -x]

. (12

C=
N N
\/ 2 Da(m=xa’ 2 Dxa(n) = xe]?

which shows for an arbitrary speci vs time. The con- . L e i
comitant behavior is the sa%epwhgt?{L;ﬂr) (there are corre- associated to v ?na},tlonsvi and dV; arising out of an arbi-
lations (function f) or not (B) as illustrated by Eq(11). We  trary changesa in a (randomly generated for eact).
conclude that the entirely different dynamics associated to Correlation coefficients in instances and B do differ.
these two situationéto be hereafter referred to as instancest-0r €xample, in casé the correlation coefficient for varia-
A andB, respectively cannot be attributed to tHa| varia- t'onfavl andéVy is Cy,=0.9901, and fobV, and_6V7 Itis
tion. Of course, even in the case of Efjl) a residual degree Ci7= _9'9205' Other.values are, for |nstar?CQ,7—_0.9266
of correlation remains on account of the conditi|o71=1, andC,=0.8942. A high degree of correlatidanticorrela-

. _ oC > tion) is observed. On the other hand, in instafc¢he cor-
which constrains the variation of the componentd/of responding figures are much lower. They do not vanish
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FIG. 6. Time evolution of/a| (arbitrary unit3 (see text The
temporal units are those of Fig. 1.

FIG. 4. Histogram of the data of Fig. @rbitrary unit3. No
power law is to be detected.
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no significant changes are detected.

V. DISCUSSION AND CONCLUSIONS

A. Generalities

An extremely simple model of biological, competitive co-
evolution has been discussed here, that, its simplicity not-
withstanding, is able to exhibit a rich, complicated dynamics.

Indeed, the dynamics is complex enough so as to mimic
(even if in superficial fashionsomefeatures of actual bio-
logical evolution. On the basis of this model one can con-
clude thatthesefacets can be explained without recourse to
catastrophic events. Further, no ambient influences need to
be invoked.

In the model a nitid differentiation between genetic and
phenotypic roles is appreciated. Evolution takes place be-
cause the “genes’(the a’s) mutate, but fitness is measured

try demands that alC;; be equal, the pertinent value being it reference to phenotypic featurébe V’s). The mapping
Ci;j=—0.23. In order to understand the difference betweenys the g's upon theV'’s is seen to play a leading role.

these two dynamicsX andB) we look atV-space mappings,

more specifically at theSV/| vs | 5a| behavior as we move on

the surface of an hypersphee of radius|5|= const. In
view of our preceding remarks we consider oraﬂ& varia-
tions tangent tcS.

In case B) we have(see the Appendix

v,= 208y 1Al (13)
,B:T_ 13__,,
Al |A|
with Az=a,. As 5la|=0 (da tangent toS),
. " , |al
|8V|= (6V,)2=—. (14)
a=1 EY

At any point on the surface af, a variation|sa| pro-

duces changes proportional |r@\7|. If we now introduce the
correlation functiorfinstance A)], things really change. We

cannot seiA;=a, so that the final expression fo6V| be-
comes more involved now, depending not only upan but
also ona. Figure 7 is a log-log plot of |¢V|/| 5a|)2. Ran-
domly generateci vectors belonging to a8 of unity radius
are subjected to smaland also arbitrar)yvariationséé tan-

gent toS. A remarkable resemblance to the graph depictin

evolutive activity distribution is observed.

We conclude that the power law associated to this distr

bution is intimately related to the features of he>V map-

ping. The “Gaussian” shape of the evolutive activity distri-
bution in instance B) simply reflects upon the nature of the

| sa| distribution (remember that in such a cak®V/|/|sa|=
consy.

ilanche,

This model can be regarded as more “realistic” than that
of [15]. Its main advantageis-a-visthe model of Bak and
Sneppeni15] resides in the fact that, as explained above, the
interaction among species receives a much more detailed
treatment: specieA is here able to respond in gradual fash-
ion to changes affecting speciBsand second-order effects
arising out of this interaction and affectingther species
(C,D, ...) arealso taken into account. A chain of changes
thus ensues that takes place within the time scale in which
B is changing. In other words, in our model “actions”
(madifications in the features of a given species due to bio-
logical evolution) and “reactions” (concomitant changes in
the remaining specigstake place almost simultaneously,
which is not the case df15]. This difference between the
models is to be attributed to the different temporal scales
they encompass. IfL5] the temporal scale is that for which
a given species suffers drastic modifications, while ours al-
lows for the description of very small ones.

B. Distinctive features of the present dynamical mechanism
for biological evolution

(1) We must stress here that the dynamics being discussed
here differs in a fundamental manner from previous ones that
predict extinction curve$EC), e.g., game of Lifd9], NKC
Kauffman and Johnsen moddl§0], asymmetric spin glass
models [13], or the Bak, Sneppen, and Flivbjerg model
[15,16. The EC's in these models respond basically to an
identical procedure(i) Let the system evolve until it reaches
a frozen state(ii) After it comes to rest, perturb it by a single

dandom mutation which does not increase the fitness of the

corresponding species. This induces a coevolutionary ava-
rather small in the beginning. When the system
comes again to a stop repdaj. After a while, the system is
pumped up to a “poised” state, where yet another mutation
may induce an avalanche of any size.

However, in the present instance, sudden activity explo-
sionsare not the product of perturbations of an equilibrium
state They arise out of the intrinsic dynamics of the system.

Finally, we point out that the evolutive dynamics is “ro- Thus, in our model, on the one hand, and in the previous

bust” against small changes in the correlation functioRor
example, replacing E(8) by

ones, on the other, the origin of the “critical” behavior is
different. Since we obtain critical behavior without recourse
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to external perturbations, as the other models demand, our ACKNOWLEDGMENT
“criticality” can be regarded as being inherent to the system
dynamics.

Moreover,in the present model, power laws are NOT a
consequence of self-organized criticali@ther mechanisms
are involved.

(2) A rather important difference between this and previ-  \we start with
ous models resides in the fact that here we are able to mimic
the interplay between different phenotypic features as evolu- k
tion proceeds along its course. Without this interptewer 2 an(BIN)"
law behavior does not exist Vv :“:0 _ Ag (A1)

This model exhibits a genetic “substructure” that one can g A |A|
mathematically express in closed and precise fashion. This is
lacking in other models. We are able to mimic changes irwhereAB=Eﬁ:0an(,8/N)” and|A|=J=N_,AZ,
just ONE gen€out of an entire genetic structyref a given Differentiation of V; leads to a relation between varia-
organism and afterwards ascertain what phenotypic variatiofyns sa and sV (we assumesa to be small, i.e.,
this single modification induces.

Support from the National Research Council of Argentina
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APPENDIX

(3) The physical nature of the mapping frofnspace to SA4A|—5|AIA, A S|A|
V space deserves some comment. Biological organisms are 5V5=B9—2B= TB_VBT, (A2)
complex structures arising as the result of the dynamics of an Al Al |Al

involved genetic network. Of course, these structures are K S
sensitive to subtle modifications in such a netwémuta-  Where 5A,8=Erl=o5an(ﬁ/'\|)" (remember that §|A|
tions). The concomitant structural changes are not, however,zEg=lAa5Aa/|A|).
of an arbitrary character, due to the fact that we are speaking syppose now that variatiora are in the radial direction
of highly correlated structures. Of course, some Strucwrefgarallel toé) We can set
are more stable than others, and respond in diverse fashion '
a network alteration. As their internal structuitee a’s) is a;=mt (A3)
modified, some systems change behavior relatively
smoothly, some relatively radically. Our model, althoughand
simple enough, does respect these biological “realities.”
This is reflected in the fact that the number of beneficial oa;=m;dt, (A4)
mutations does not augment during periods of explosive bio- ,
logical activity but remains constant. Selective evolution isWith constanim; . t is a parameter that adopts the same value
thus able to “tune up” in just this fashion the structure of the for all &;. Thus
evolving system. St

In previous models that predict self-organized criticality SAz=Az—, (A5)
this is not the case. When avalanches occur, the number of t
good” mutations grows.

and
C. Concluding remarks N N
2 2
Summing up, we can conclude that the model introduced 5|5\| azl Aot St azl Aq St
in [17] generates a dynamical mechanism for punctuated — = 2 1 Rz 1 (AB)
equilibrium and power law behavior in biological evolution. A Al A

The simplicity of the mechanism allows for its being ex-
pressed in concise, closed mathematical fashion, placing d
thus in a position to predict outcomes. This mechanism is

thus to be added to previously reported ofeslf-organized S5V :%_ ﬁz % ﬁ_v ﬁzo (A7)
criticality, periodic climate changes, recurrent catastrophes, PUIAL Pt At P

etc) and may be of some help in trying to unravel a small

portion of the complexity that characterizes any biologicalshowing that all lines through the origifin A space are
process, and, in particular, to help to understand the mechanapped onto the surface of a hypersphere of radius unity in
nisms by which adaptive processes mold systems with thely space(notice that the no-correlation case is the particular

gsertion into Eq(A2) yields now

own inherent order. instanceAz=ay).
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