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Dynamical mechanisms for biological evolution

J. Fernandez* and A. Plastino†
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~Received 25 July 1996; revised manuscript received 6 November 1996!

Both the power law and the punctuated equilibrium phenomena, which have lately been regarded as an
essential requirement in order to model biological evolution, are analyzed here with reference to a simple
model recently introduced in the literature. We show that these features are inherent in the associated dynam-
ics, without recourse to external perturbations. It is seen, also, that correlations among phenotypic features
constitute an essential ingredient. Comparison with previous evolutive models that exhibit self-organized
criticality is also made.@S1063-651X~97!10306-3#
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I. INTRODUCTION

Gould @1# has conjectured that biological evolution tak
place in terms of intermittent bursts of activity separati
relatively long periods of quiescence, rather than in a grad
manner.

This intermittent pattern has been observed by Raup, S
kosky, and Boyajian@2–5# by studying fossil records. Gould
has coined the term ‘‘punctuated equilibrium’’ to descri
the intermittent behavior of the evolution of single specie

It has been suggested that extinction events are cause
external forces~at least the larger ones!, such as changing
sea levels@6#, worldwide climate pulses@7#, or meteorites
@8#. Plausible as this is, punctuated equilibrium may well
the natural consequence of the dynamics of biology its
with no need for external triggering mechanisms.

Following this idea, it has been suggested that the ecol
of interacting species has evolved to a self-organized crit
state @9,10#. Self-organized criticality@11,12# refers to the
tendency of some dynamical systems to organize themse
into a ‘‘poised’’ state far out of equilibrium~at the edge of
chaos! with propagating avalanches of activity of all sizes

However, theoretical investigations have been hampe
by the difficulty of constructing even remotely realistic, y
tractable mathematical models. First, punctuated equili
were observed by Bak, Chen, and Creutz@9# in the ‘‘Game
of Life,’’ a simple computer model of a society of living an
dying individuals living on a two dimensional lattice. How
ever, it is not robust against small changes in the rules, a
should be in order to represent real evolution. Later, Kau
man and Johnsen@10# studied elaborate ‘‘NKC models’’ of
coevolving species evolving at the edge of criticality, w
periods of stasis interrupted by coevolutionary avalanch
However, as these models were driven they do not s
organize: some external tuning of the system was neede
obtain critical behavior@13,14#.

Finally, Bak, Sneppen, and Flivbjerg@15,16# studied a
very ingenious model of an evolving biology which se
organizes into a critical steady state. Notwithstanding its
evance and originality, the model is too simple to allow f
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reasonable conjectures concerning terrestrial biology.
A more involved model, inspired in Refs.@15,16#, has

been recently proposed@17# thatmixes contraption and de
sign with randomness. The model exhibits some criticality
features, in particular, in what pertains to power laws in
distribution of the intensities of the evolutive avalanches,
obtained by Raup@3# on the basis of fossil records.

More specifically, it was found in@17# that its dynamics is
complex enough so as to be able to mimic some facets
actual biological evolution. On the basis of the model o
may understand that several~simple! dynamical mechanisms
exist that account for these facets without recourse to c
strophic events.

The mainnewfeature of the model of@17# resides in that
it allows species, say,A, to respond ingradual fashion to
changes affecting another species (B) in such a manner tha
second-order effects arising out of theA-B interaction may
influence a third species, and so on. A whole chain
changes thus ensues that takes place within the same
scale in whichB is changing. Actions and reactions occ
almost simultaneously, which is not the case of the mode
Bak et al. @15,16#.

In view of the relative success of the model advanced
Ref. @17# we think it appropriate to try to qualitatively un
derstand the reasons that underlie that success, unde
assumption that some qualitative features of the concomi
dynamics should be identified and considered responsible
it. If these features can be pinpointed, further progress
surely be made in constructing more realistic models.

In this vein we ask ourselves the following questions.~1!
What exactly is the role that, in this model, correlations b
tween phenotype and genotype play? Are they an esse
dynamical ingredient responsible for the punctuated equi
rium ~and power law! behavior or just a superfluous feature
~2! Are the mechanisms that originate the punctuated e
librium and power law behavior in the present model simi
to those of the pioneer models referred to above~in the sense
that the dynamics of the model necessarily involves evo
tion towards a self-organized critical state! or do we find here
alternativedynamical mechanisms?

It is the aim of the present paper to answer these qu
tions. We begin the concomitant task with a brief review
the model under consideration.
841 © 1997 The American Physical Society
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II. MODEL

We deal withM distinct, interacting biological species
each of which is represented by a vector inRN. The compo-
nents Va

i of VW i represent different phenotypic featur
(a,b, . . . ) that are to be affected and modified by the ev
lutionary process. The degree to which thei th species is
‘‘adapted’’ to the environment is represented by a quan
Fi , to be called its ‘‘fitness,’’ a vocable that~in biology!
would encompass fecundity, fertility, and other factors r
evant to reproductive success. In our modelFi is given by
the expression

Fi5(
j

M

(
a,b

N

gab
i j Va

i Vb
j 1(

g

N

Vg
i Ag

i , i51, . . . ,M ~1!

where the hypermatrixgab
i j provides the details of the inter

species interaction and the second summand on the r
hand side is an ‘‘environmental’’ one~see below!. As in Ref.
@17# we assumegab

i j 52gba
j i . This is a reasonable assum

tion, because if thea feature of the speciesi gives it a
competitive edge against theb feature of thej species, the
latter gives it, of course, a competitive disadvantage aga
the former~symbiosis is excluded!. The Ag

i matrix mimics
the environmental influence~such as climate, geograph
etc.! over theg feature of thei th species. Notice the stron
similarity of the right-hand side above with that of the righ
hand side of Volterra’s dynamics for the populationsNi of
M interacting species@18#

dNi

dt
5(

j51

M

AiNi1gi jNiNj , ~2!

where, of course, the symbols have different meanings wh
we do not need to explain here.

Of course, the components ofVW i must necessarily exhibi
some degree of correlation, as genes are simultaneousl
volved in several phenotypic features. This correlation is r
resented by recourse to mappings between a set ofk11 real
parameters and each of these components, i.e.,

f b :a0
i , . . . ,ak

i→Vb
i , ~3!

that is,

Vb
i 5 f b~a0

i , . . . ,ak
i !, ~4!

with f b an appropriate function. The seta0
i , . . . ,ak

i defines
in fact thei species. As a result of biological mutations, the
parameters are allowed to vary with time. The family of
these (M ) sets can be called theconfigurationof the system.

The conceptual difference between thea’s and theV’s
should be emphasized here. The components ofV denote
different phenotypic features of the species that this ve
represents. These features are correlated, via thea’s, in the
manner just described. Genetic changes, here mimicke
modifications in thea values, drive the evolutionary proces
The correlations just mentioned constitute an essential as
of the model. Without them, a given species might~eventu-
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ally! attain, after a series of appropriate mutations,anyphe-
notypic feature whatsoever. This does not happen in na
~see@17# for more details!.

The system evolves in the following fashion: we sta
with an arbitrary initial configuration~the ai are randomly
chosen within@21,1#) and, in each of a series of time step
mutation effects are mimicked by slightly modifying theai
for the l th species. Both the selection ofl and the nature of
the changes are random. The conditionuVW i u51 is enforced
so as to avoid unrestricted growth~with time! of uVW i u.

A particular mutation~change in a givena) is ‘‘ac-
cepted’’ if it increases the corresponding fitness~as a conse-
quence of such a mutationFi grows!. Thea change is in this
case retained~‘‘selection’’ acting on ‘‘single genes’’!. Oth-
erwise it is discarded and theai end up with their previous,
old values.

Extensive numerical studies suggest that such a sys
never reaches an equilibrium situation, a fact that could
guessed from the skew symmetry ofgi j @19#. The number of
species,M , is kept constant for the sake of simplicity. How
ever, as the features of each species are in a state of con
ous change, there is a considerable amount of ‘‘evolut
activity,’’ that we shall quantify with reference to the motio
of a ‘‘center of mass’’

XW c.m.5(
i51

M

VW i ~5!

whose value is to be ascertained at a series of regul
spaced times. We define evolutive activity (AE) in the fash-
ion

AE5ud tXc.m.
Wu2, ~6!

whered t stands for ‘‘variation int temporal steps’’~in this
work we choose the number of steps to be 1000!.

A species becomes extinct when it accumulates a suc
sion of changes of a certain magnitude. More specifica
whenever the vectorVW i traverses inRN a distance larger than
~a threshold! Dt .

For simplicity’s sake we choose~i! our hypermatrix in the
form

gab
i j 5ki j dab , ~7!

and ~ii ! Ag
i 50. The latter is more than a mere way of sim

plifying things, however, as we intend to demonstrate t
the main facets of biological evolution our model tries
mimic are of anintrinsic dynamical origin, so that ambient
influences need not to be invoked.

Now, Eq. ~1! reduces to

Fi5(
j51

M

ki j VW
i
•VW j , i51, . . . ,M ~8!

where ki j52kji . The ki j are randomly chosen within
@21,1# ~for i, j ) and are kept constant throughout. The
simplifications notwithstanding, a complex enough dynam
ensues that it can account for important details of fos
records.
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56 843DYNAMICAL MECHANISMS FOR BIOLOGICAL EVOLUTION
As polynomials are a basis in any reasonable funct
space, the ‘‘correlation functions’’ discussed above can
chosen in a simple, and at the same time general, fashio
k-degree polynomials@cf. Eq. ~4!#. In @17# the functional
form was chosen in the~quite general! fashion

f b5 (
n50

k

anx
n, x5b/N ~9!

so that

Vb
i 5 (

n50

k

an
i ~b/N!n. ~10!

Notice that in the limitk5→` we have avery general
representation for our functions. Indeed, in that limit Eq.~9!
can representany function @20#.

III. DYNAMICS OF THE MODEL

Figure 1 depicts biological activity versus time fo
M525, N57, and @cf. Eq. ~4!# k55. One thousand time
steps have been considered as the unit of time. The curv
qualitatively similar to Sepkosky’s extinction curve, obtain
on the basis of the fossil record@5#, and to that obtained in
@17#.

A more detailed analysis of the evolving system of Fig
shows that the distributions of evolutive activity and lifetim
follow a power law~see also the curves of Ref.@17#!.

Power laws are typical of the self-organized critical
encountered in dealing with the celebrated~although sim-
pler! models of Refs.@15,16#. The fact that both lifetime and
number of extinct species follow there a power law is usua
regarded as evidence for critical behavior.This is not neces-
sarily so, as will be shown in the present effort.

An important difference between our model and the o
of @15,16# becomes apparent if we look at a graph of t
number of ‘‘accepted’’~good, beneficial! mutations versus
time, for the series of Fig. 1. Contrary to what happens
@15,16#, in this case the number of beneficial mutationsdoes
not augment during the periods of frenetic biological activ

FIG. 1. Global evolution rate ~arbitrary units! for
M525, N57, andk55. Each point represents the distance t
versed by the center of mass of the system in an adimensi
temporal unit equal to 1000 time steps.
n
e
as

is

y
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n

~i.e., of great morphological changes!. It remains approxi-
mately the same at all times, with random fluctuations,
illustrated in Fig. 2. It is to be pointed out that, as far as
know, no other model is able toquantitativelyexhibit such a
behavior.

IV. ROLE OF THE CORRELATIONS

The parametersan define the species. The manner
which the different phenotypic characteristics of a given
ganism are correlated depends upon these parameters, w
are being continuously modified at approximately the sa
mean rate. However, these changes do not affect the dis
species~or the same species at different times! in similar
fashion. For a given set ofan values a small variationdan
may be translated into a correspondingly small change in
phenotypic featuresVi . But it is also possible that for a
different an set a tinydan may result in an appreciableVi
change. Thus, during its evolutive history, a species en
~and leaves! diverse regionsRi of the spaceA of coordinates
an , the nature of whose mapping on theV space~coordi-
natesVi) considerably varies with~strongly depends upon!
i , from region to region.

In this model the correlation functionf is the responsible
for the critical phenomena it exhibits. This is easily verifie
In a simulation run withoutf one has

Vj
i5aj

i , ~11!

so that the different phenotypic features evolve in indep
dent fashion. The corresponding results are depicted in F
3–5.

Figure 3 depicts global evolutive activity vs time. An
resemblance to Sepkosky’s extinction one@5# is now lost. No
sudden activity explosions ensue. For the single-species
stance ~Fig. 5! similar features are observed. Punctuat
equilibrium has disappeared. Figure 4 displays the distri
tion of evolutive activities corresponding to the resu
shown in Fig. 3. No power law is obeyed and correlatio
among the diverse phenotypic features are thus seen to b
essential ingredient in order to attain criticality. The sam
happens with lifetime distributions. However, no importa

-
al

FIG. 2. Time evolution of the number of beneficial mutatio
for the data of Fig. 1. Each point corresponds to an adimensio
temporal unit equal to 1000 time steps.
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844 56J. FERNANDEZ AND A. PLASTINO
differences are observed in relation to the results depicte
Fig. 2 ~number of mutations vs time!.

Our model does not exhibit scaling behavior whenN,M
change, in contrast with the situation encountered when d
ing with most dynamical systems possessing self-organ
criticality. Some features of the mapping betweenA andV
spaces, in turn, deserve special comment. The value ofVW is
constant along straight lines through the origin inA. Muta-
tions ~variations! daW that do not change vector orientation
aW leaveVW invariant ~see the Appendix!, a fact that implies
that a givendaW will affect VW to a greater extent for smallaW

values than for largeaW ones.
We now call attention to the results depicted in Fig.

which shows for an arbitrary species,uaW u vs time. The con-
comitant behavior is the same whether (A) there are corre-
lations~function f ) or not (B) as illustrated by Eq.~11!. We
conclude that the entirely different dynamics associated
these two situations~to be hereafter referred to as instanc
A andB, respectively! cannot be attributed to theuaW u varia-
tion. Of course, even in the case of Eq.~11! a residual degree
of correlation remains on account of the conditionuVW u51,
which constrains the variation of the components ofVW .

FIG. 3. Global evolutive activity~arbitrary units! for an uncor-
related system withM525, N57. Each point represents the di
tance traversed by the system’s center of mass in the units of Fi

FIG. 4. Histogram of the data of Fig. 3~arbitrary units!. No
power law is to be detected.
in
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d

,
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The correlation coefficient between two quantitiesx1(n)
andx2(n) is

C5

(
n51

N

@x1~n!2x1̄#@x2~n!2x2̄#

A(
n51

N

@x1~n!2x1̄#
2(
n51

N

@x2~n!2x2̄#
2

, ~12!

and varies in the interval@21,1#. The value 1 entails maxi-
mum degree of correlation,21 ‘‘anticorrelation,’’ and zero,
no correlation@x1(n), x2(n) vary in independent fashion#.

In our case we takeN5105 andx1(n), x2(n) are to be
associated to variationsdVi anddVj arising out of an arbi-
trary changedaW in aW ~randomly generated for eachn).

Correlation coefficients in instancesA and B do differ.
For example, in caseA the correlation coefficient for varia
tionsdV1 anddV2 isC1250.9901, and fordV1 anddV7 it is
C17520.9205. Other values are, for instance,C6750.9266
andC1450.8942. A high degree of correlation~anticorrela-
tion! is observed. On the other hand, in instanceB the cor-
responding figures are much lower. They do not van

1.

FIG. 5. Single-species evolutive activity~arbitrary units!. The
data are those of Fig. 3. Punctuated equilibrium has disappea
The temporal units are those of Fig. 1.

FIG. 6. Time evolution ofuaW u ~arbitrary units! ~see text!. The
temporal units are those of Fig. 1.
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56 845DYNAMICAL MECHANISMS FOR BIOLOGICAL EVOLUTION
though, on account of the constraintuVW u51. Indeed, symme-
try demands that allCi j be equal, the pertinent value bein
Ci j520.23. In order to understand the difference betwe
these two dynamics (A andB) we look atV-space mappings
more specifically at theudVW u vs udaW u behavior as we move on
the surface of an hypersphereS of radius uaW u5 const. In
view of our preceding remarks we consider onlydaW varia-
tions tangent toS.

In case (B) we have~see the Appendix!

dVb5
dAb

uAW u
2Vb

duAW u

uAW u
, ~13!

with Ab5ab . As duaW u50 (daW tangent toS),

udVW u[A(
a51

N

~dVa!25
udaW u

uaW u
. ~14!

At any point on the surface ofS, a variationudaW u pro-
duces changes proportional toudVW u. If we now introduce the
correlation function@instance (A)#, things really change. We
cannot setAb5ab so that the final expression forudVW u be-
comes more involved now, depending not only uponuaW u, but
also onaW . Figure 7 is a log-log plot of (udVW u/udaW u)2. Ran-
domly generatedaW vectors belonging to anS of unity radius
are subjected to small~and also arbitrary! variationsdaW tan-
gent toS. A remarkable resemblance to the graph depict
evolutive activity distribution is observed.

We conclude that the power law associated to this dis
bution is intimately related to the features of theA→V map-
ping. The ‘‘Gaussian’’ shape of the evolutive activity distr
bution in instance (B) simply reflects upon the nature of th
udaW u distribution ~remember that in such a caseudVW u/udaW u5
const!.

Finally, we point out that the evolutive dynamics is ‘‘ro
bust’’ against small changes in the correlation functionf . For
example, replacing Eq.~8! by

FIG. 7. Histogram showing the distribution of (udVW u/udaW u)2

~arbitrary units! over the unit hypersphere~see text!.
n

g

i-

f b5 (
n50

k S an b

ND n, ~15!

no significant changes are detected.

V. DISCUSSION AND CONCLUSIONS

A. Generalities

An extremely simple model of biological, competitive co
evolution has been discussed here, that, its simplicity n
withstanding, is able to exhibit a rich, complicated dynami

Indeed, the dynamics is complex enough so as to mi
~even if in superficial fashion! somefeatures of actual bio-
logical evolution. On the basis of this model one can co
clude thatthesefacets can be explained without recourse
catastrophic events. Further, no ambient influences nee
be invoked.

In the model a nitid differentiation between genetic a
phenotypic roles is appreciated. Evolution takes place
cause the ‘‘genes’’~the a’s! mutate, but fitness is measure
with reference to phenotypic features~theV’s!. The mapping
of thea’s upon theV’s is seen to play a leading role.

This model can be regarded as more ‘‘realistic’’ than th
of @15#. Its main advantagevis-a-vis the model of Bak and
Sneppen@15# resides in the fact that, as explained above,
interaction among species receives a much more deta
treatment: speciesA is here able to respond in gradual fas
ion to changes affecting speciesB and second-order effect
arising out of this interaction and affectingother species
(C,D, . . . ) arealso taken into account. A chain of chang
thus ensues that takes place within the time scale in wh
B is changing. In other words, in our model ‘‘actions
~modifications in the features of a given species due to b
logical evolution! and ‘‘reactions’’ ~concomitant changes in
the remaining species! take place almost simultaneousl
which is not the case of@15#. This difference between the
models is to be attributed to the different temporal sca
they encompass. In@15# the temporal scale is that for whic
a given species suffers drastic modifications, while ours
lows for the description of very small ones.

B. Distinctive features of the present dynamical mechanism
for biological evolution

~1! We must stress here that the dynamics being discus
here differs in a fundamental manner from previous ones
predict extinction curves~EC!, e.g., game of Life@9#, NKC
Kauffman and Johnsen models@10#, asymmetric spin glass
models @13#, or the Bak, Sneppen, and Flivbjerg mod
@15,16#. The EC’s in these models respond basically to
identical procedure:~i! Let the system evolve until it reache
a frozen state.~ii ! After it comes to rest, perturb it by a singl
random mutation which does not increase the fitness of
corresponding species. This induces a coevolutionary a
lanche, rather small in the beginning. When the syst
comes again to a stop repeat~ii !. After a while, the system is
pumped up to a ‘‘poised’’ state, where yet another mutat
may induce an avalanche of any size.

However, in the present instance, sudden activity exp
sionsare not the product of perturbations of an equilibriu
state. They arise out of the intrinsic dynamics of the syste
Thus, in our model, on the one hand, and in the previo
ones, on the other, the origin of the ‘‘critical’’ behavior
different. Since we obtain critical behavior without recour
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846 56J. FERNANDEZ AND A. PLASTINO
to external perturbations, as the other models demand,
‘‘criticality’’ can be regarded as being inherent to the syste
dynamics.

Moreover, in the present model, power laws are NOT
consequence of self-organized criticality. Other mechanisms
are involved.

~2! A rather important difference between this and pre
ous models resides in the fact that here we are able to m
the interplay between different phenotypic features as ev
tion proceeds along its course. Without this interplaypower
law behavior does not exist.

This model exhibits a genetic ‘‘substructure’’ that one c
mathematically express in closed and precise fashion. Th
lacking in other models. We are able to mimic changes
just ONE gene~out of an entire genetic structure! of a given
organism and afterwards ascertain what phenotypic varia
this single modification induces.

~3! The physical nature of the mapping fromA space to
V space deserves some comment. Biological organisms
complex structures arising as the result of the dynamics o
involved genetic network. Of course, these structures
sensitive to subtle modifications in such a network~muta-
tions!. The concomitant structural changes are not, howe
of an arbitrary character, due to the fact that we are spea
of highly correlated structures. Of course, some structu
are more stable than others, and respond in diverse fashi
a network alteration. As their internal structure~the a’s! is
modified, some systems change behavior relativ
smoothly, some relatively radically. Our model, althou
simple enough, does respect these biological ‘‘realitie
This is reflected in the fact that the number of benefic
mutations does not augment during periods of explosive
logical activity but remains constant. Selective evolution
thus able to ‘‘tune up’’ in just this fashion the structure of t
evolving system.

In previous models that predict self-organized critical
this is not the case. When avalanches occur, the numbe
‘‘good’’ mutations grows.

C. Concluding remarks

Summing up, we can conclude that the model introdu
in @17# generates a dynamical mechanism for punctua
equilibrium and power law behavior in biological evolutio
The simplicity of the mechanism allows for its being e
pressed in concise, closed mathematical fashion, placin
thus in a position to predict outcomes. This mechanism
thus to be added to previously reported ones~self-organized
criticality, periodic climate changes, recurrent catastroph
etc.! and may be of some help in trying to unravel a sm
portion of the complexity that characterizes any biologi
process, and, in particular, to help to understand the me
nisms by which adaptive processes mold systems with t
own inherent order.
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APPENDIX

We start with

Vb5

(
n50

k

an~b/N!n

uAW u
5
Ab

uAW u
, ~A1!

whereAb5(n50
k an(b/N)

n and uAW u5A(a51
N Aa

2.
Differentiation of Vb leads to a relation between varia

tions daW anddVW ~we assumedaW to be small!, i.e.,

dVb5
dAbuAW u2duAW uAb

uAW u2
5

dAb

uAW u
2Vb

duAW u

uAW u
, ~A2!

where dAb5(n50
k dan(b/N)

n ~remember that duAW u
5(a51

N AadAa /uAW u).
Suppose now that variationsdaW are in the radial direction

~parallel toaW ). We can set

ai5mit ~A3!

and

dai5midt, ~A4!

with constantmi . t is a parameter that adopts the same va
for all ai . Thus

dAb5Ab

dt

t
, ~A5!

and

duAW u

uAW u
5

(
a51

N

Aa
2dt/t

uAW u2
5

dt

t

(
a51

N

Aa
2

uAW u2
5

dt

t
. ~A6!

Insertion into Eq.~A2! yields now

dVb5
dAb

uAW u
2Vb

dt

t
5
Ab

uAW u

dt

t
2Vb

dt

t
50, ~A7!

showing that all lines through the origin~in A space! are
mapped onto the surface of a hypersphere of radius unit
V space~notice that the no-correlation case is the particu
instanceAb5ab).
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